Construction Management Breadth

Introduction

To determine whether the change from a steel structural system to a concrete system in the Washingtonian Center is justifiable, several factors from the construction management field of study were considered. The first and most obvious consideration was a cost analysis and comparison of the two systems. This comparison included not only the cost of materials, placement and erection of the structure but also considered the potential revenue from leasing the office space (this is different for the two systems because of the additional floor in the concrete structure) A second consideration, and one that is directly linked to the cost of the building; is the construction schedule of the building. From a financial standpoint, the schedule of a project is important because it allows the owner plan when to borrow how much money so that interest on the loans can be minimized. When the building costs are in the tens of millions of dollars, the interest on the loans accumulates very quickly. The owner doesn't begin to see any revenue from the investment until the building is often very desirable and made a priority. A concrete and steel structure could potentially have very different construction time frames, and for this reason a scheduling comparison needs to be done to complete a cost effectiveness comparison.

Cost Estimate Comparison

To estimate the costs of constructing the two different systems, a detailed take-off was done for each system. These take-offs accounted for each unit of material that are included in the structural design. For example, the linear feet of each different size of steel shape was tabulated and recorded, the cubic yard of concrete needed to fill and top the steel deck was calculated, and the tons of rebar were found. Once the unit take-off was completed, RS Means: Building Construction Cost Date 2008 was consulted to estimate the unit cost of each material. Along with the unit costs of the materials, an allowance for construction labor and equipment rental required for construction were used. To find the total cost estimate, the unit prices were multiplied by the unit take-off values and a final number was reached. It should be noted that an allowance for overhead and profit in the construction of the building was not included and therefore may not accurately represent the actual building construction costs in the real world. Generally about ten percent were be added to the estimate to account for these factors, however this wasn't done in this case because a straight comparison of the two systems is desired. RS Means can be a very useful estimating tool but the numbers taken from it need to be considered within their intended contexts. The base costs are often specified for a specific type of building, or other applicable criteria and then adjustment factors are used to correct for other situations. The adjustment factors and the intended application of the numbers given in RS Means need to be fully understood before a meaningful estimate can be obtained. For this reason, the following subsections will address the specific intended application of the RS Means numbers and how if at all they were adjusted to create an accurate estimate for the Washingtonian Center. It should be noted that not all sections of the estimate need extra explaining, such as the foundations, and shear studs and for this reason only the tables used for the estimate are provided.

Steel Structure Estimate

Structural Steel Members

The basic numbers given are intend to accurately estimate a 1-2 story building with shop fabricated bolted connections, and a total steel weight of 100 tons. To adjust the numbers for a nine story office building, the total structural steel estimate is recommended to be increased by 5%. The Washingtonian Center does utilize shop fabricated bolted connections, therefore no adjustor is required for that aspect of the estimate. In addition to the structural steel estimate that is broken down by shape, an allowance of 10% of the steel cost is recommended to account for connection steel such as bolts, washers, connection angles and plates. Additionally allowances of 3%, 5% and 5% are suggested to be used for base plates for the columns, column splices, and other miscellaneous details. In all a total of 28% was added to the columns, and 18% was added to the beams and girders.

Beams/Girders	Unit	Schee	duling		U	nit Costs			
Shape	Linear Feet	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	Actual Cost
W10x15	890	E-2	600	0.093	18.15	3.91	2.61	24.67	\$21,956.30
W10x77	1067	E-2	560	0.09	20.1	3.96	2.66	26.72	\$28,510.24
W12x16	60	E-2	880	0.64	16.95	2.66	1.78	21.39	\$1,283.40
W14x22	670	E-2	990	0.057	31.5	2.37	1.58	35.45	\$23,751.50
W16x26	4230	E-2	1000	0.056	31.5	2.34	1.57	35.41	\$149,784.30
W16x36	20	E-2	800	0.07	48.5	2.93	1.96	53.39	\$1,067.80
W18x35	372	E-2	960	0.083	42.5	3.53	1.77	47.8	\$17,781.60
W18x40	120	E-2	960	0.083	48.5	3.53	1.77	53.8	\$6,456.00
W18x50	660	E-2	912	0.088	60.5	3.72	1.86	66.08	\$43,612.80
W21x44	2038	E-2	1064	0.075	53	3.19	1.6	57.79	\$117,776.02
W21x50	372	E-2	1064	0.075	60.5	3.19	1.6	65.29	\$24,287.88
W24x62	100	E-2	1110	0.072	75	3.06	1.53	79.59	\$7,959.00
W24x68	40	E-2	1110	0.072	82.5	3.06	1.53	87.09	\$3,483.60

Columns	Unit	Scheduling			Unit Costs				
Shape	Linear Feet	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	Actual Cost
W10x33	853	E-2	1080	0.052	37.5	2.17	1.45	41.12	\$35,075.36
W10x39	320	E-2	1032	0.054	54.5	2.27	1.52	58.29	\$18,652.80
W10x49	1280	E-2	1000	0.055	64.16	2.31	1.54	68.00724	\$87,049.27
W10x68	640	E-2	984	0.057	82.5	2.38	1.59	86.47	\$55,340.80
W10x77	320	E-2	976	0.058	94	2.43	1.6	98.03	\$31,369.60
W12x40	348	E-2	1060	0.052	43	2.18	1.52	46.7	\$16,251.60
W12x53	160	E-2	1020	0.055	67	2.35	1.54	70.89	\$11,342.40
W12x58	240	E-2	1008	0.056	73	2.36	1.57	76.93	\$18,463.20
W12x65	560	E-2	1000	0.57	80	2.38	1.58	83.96	\$47,017.60
W12x87	240	E-2	984	0.057	105	2.38	1.59	108.97	\$26,152.80
W12x96	320	E-2	976	0.058	114	2.42	1.62	118.04	\$37,772.80
W12x106	240	E-2	956	0.059	119	2.46	1.66	123.12	\$29,548.80
W12x210	240	E-2	840	0.064	156	2.96	2.1	161.06	\$38,654.40

Steel Decking

The decking estimate values are based off of the type of deck and the number of squares (one square is one hundred square feet of deck) that are needed for the project. In the case of the Washingtonian Center, the floor decking is 3" deep 20 gauge composite deck, while the roof decking is 1.5" 22 Gauge type "B" decking. No adjustments were needed for either of the decks because RS Means specifically lists the type of deck and prices based on the number of squares required.

Fire Proofing

The fire proofing estimate was based off of the requirements to provide two hours of protection to the structural steel members. It was assumed that a spray on cementitious fire proofing would be applied in the field. A 1" covering was applied to the beams, girders and the underside of the steel deck while a cover of 1-1/8" was applied to the columns. The surface area that requires fire proofing was calculated for each shape and is shown in its own table below.

	Unit	Schee	duling		U	nit Costs			
Shear Studs	Number	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	Actual Cost
3/4" Dia. 5" Long	1285	E-10	920	0.017	0.62	0.77	0.39	1.78	\$2,287.30
Floor Deck	Square Feet	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	
3x20 GA, Comp.	165000	E-4	3000	0.011	1.86	0.46	0.04	2.36	\$389,400.00
Concrete Topping	Cubic Yards	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	Actual Cost
Lightweight	2420	C-20	160	0.4	158.05	13	4.86	175.91	\$425,702.20
Welded Wire Fabric	Hundred Square Feet	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	
W2.1xW2.1	1650	2 Rodm	31	0.516	14.36	19.25	0	33.61	\$55,456.50
Roof Deck	Square Feet	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	Actual Cost
1.5x22 GA. "B"	23000	E-4	4900	0.007	1.25	0.28	0.03	1.56	\$35,880.00
Fire Proofing	Surface Area: S.F.	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	
Beams/Girders	4160.50	G-2	1500	0.016	0.47	0.51	0.08	1.06	\$4,410.13
Columns	2468.42	G-2	1100	0.022	0.53	0.7	0.12	1.35	\$3,332.36
Floor Deck	165000.00	G-2	1250	0.019	0.71	0.62	0.1	1.43	\$235,950.00
Roof Deck	23000.00	G-2	1250	0.019	0.71	0.62	0.1	1.43	\$32,890.00

Fire Proofi	ire Proofing Area: Beams/Girders											
Shape	Linear Feet	d (in)	b _f (in)	t _f (in)	t _w (in)	perimeter	Area					
W10x15	890.00	10.00	4.00	0.27	0.23	35.54	219.66					
W10x77	1067.00	10.60	10.20	0.87	0.53	60.94	451.55					
W12x16	60.00	12.00	3.99	0.27	0.22	39.52	16.47					
W14x22	670.00	13.70	5.00	0.34	0.23	46.94	218.40					
W16x26	4230.00	15.70	5.50	0.35	0.25	52.90	1553.94					
W16x36	20.00	15.90	6.99	0.43	0.30	59.17	8.22					
W18x35	372.00	17.70	6.00	0.43	0.30	58.80	151.90					
W18x40	120.00	17.90	6.02	0.53	0.32	59.25	49.38					
W18x50	660.00	18.00	7.50	0.57	0.36	65.29	299.25					
W21x44	2038.00	20.70	6.50	0.45	0.35	66.70	943.99					
W21x50	372.00	20.80	6.53	0.54	0.38	66.96	172.98					
W24x62	100.00	23.70	7.04	0.59	0.43	74.70	51.88					
W24x68	40.00	23.70	8.97	0.59	0.42	82.45	22.90					
					Tota	I Area (S.F.)=	4160.50					

Fire Proofi	ng Area: Colum	ns					
Shape	Linear Feet	d (in)	b _f (in)	t _f (in)	t _w (in)	perimeter	Area
W10x33	853.00	9.73	7.96	0.44	0.29	50.72	300.45
W10x39	320.00	9.92	7.99	0.53	0.32	51.17	113.71
W10x49	1280.00	10.00	10.00	0.56	0.34	59.32	527.29
W10x68	640.00	10.40	10.10	0.77	0.47	60.26	267.82
W10x77	320.00	10.60	10.20	0.87	0.53	60.94	135.42
W12x40	348.00	11.90	8.01	0.52	0.30	55.25	133.52
W12x53	160.00	12.10	10.00	0.58	0.35	63.51	70.57
W12x58	240.00	12.20	10.00	0.64	0.36	63.68	106.13
W12x65	560.00	12.10	12.00	0.61	0.39	71.42	277.74
W12x87	240.00	12.50	12.10	0.81	0.52	72.37	120.62
W12x96	320.00	12.70	12.20	0.90	0.55	73.10	162.44
W12x106	240.00	12.90	12.20	0.99	0.61	73.38	122.30
W12x210	240.00	14.70	12.80	1.90	1.18	78.24	130.40
				·	Tota	Area (S.F.)=	2468.42

Foundations	Unit	Scheduling			U	nit Costs			
Spread Footings	C.Y./S.F.C.A.	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	Actual Cost
Concrete									
material	340	-	-	-	100	-	-	100	\$34,000.00
formwork	3380	C-1	414	0.077	0.63	2.79	-	3.42	\$11,559.60
placement	340	C-20	150	0.427	-	13.9	5.2	19.1	\$6,494.00
Combined Footings	C.Y./S.F.C.A.	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	Actual Cost
Concrete									
material	428	-	-	-	100	-	-	100	\$42,800.00
formwork	648	C-2	350	0.137	0.63	5.1	-	5.73	\$3,713.04
placement	428	C-20	150	0.427	-	13.9	5.2	19.1	\$8,174.80
Reinforcement	Tons	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Total	Actual Cost
#3-#7	13.94	4 Rodm	2.1	15.238	890	655	-	1545	\$21,537.30
#8-#12	16.48	4 Rodm	3.6	8.889	890	380	-	1270	\$20,929.60

System	Base Costs	Adjustment Percentage	Adjusted Costs
Beams/Girders	\$447,710.44	18%	\$528,298.32
Columns	\$452,691.43	28%	\$579,445.03
Foundations	\$149,208.34	0	\$149,208.34
Floor Deck	\$389,400.00	0	\$389,400.00
Roof Deck	\$35,880.00	0	\$35 <i>,</i> 880.00
Shear Studs	\$2,287.30	0	\$2,287.30
Concrete Topping	\$425,702.20	0	\$425,702.20
Welded Wire Fabric	\$55 <i>,</i> 456.50	0	\$55 <i>,</i> 456.50
Fire Proofing	\$276,582.49	0	\$276,582.49
Total Structure Cost:			\$2,442,260.18

Concrete Structure Estimate

The construction of the concrete structural system is very different from its steel counterpart. Steel is fabricated away from the site and then simply erected in pieces once it is delivered to the site. The design of the concrete structure utilizes cast in place floors, columns, and footings which require careful detailed creation in the field. It often is difficult to develop accurate cost estimates for a concrete system because of all of the variables that come into play. It is possible however to account for these details by using informed adjustments to the estimate that come from common practice and experience. The following sections give the cost estimate for the different components of the structure along with how the numbers were developed.

Post-Tensioned Flat Plates

The floor plate was designed using Ram Concept which has a convenient feature that does a take-off for the design. These numbers were used as a starting point, and were adjusted to account for factors that would affect the actual construction cost. An additional 10% of concrete was added to the cubic yards required to account for waste, and concrete that goes unused. The concrete costs were taken for 5000 psi concrete, while labor and The rebar weight was adjusted by 10% as well to make up for waste, and over lapping of bars at splice points. The formwork square footage didn't need any adjusting, and the unit prices were taken for plywood forms.

Post-Tensioned Floor				Scheduling		Unit Costs				
Component	Unit	Quanity	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Actual Costs	
Concrete	C.Y.	5279.4	C-20	160	0.4	\$109.00	\$13.00	\$4.86	\$669,744.68	
Formwork	S.F.	213840	C-2	560	0.086	\$1.42	\$3.18	\$0.00	\$983,664.00	
Reinforcing: #4-#7	Ton	76.221	4 Rodm	2.9	11.034	\$990.00	\$475.00	\$0.00	\$111,663.77	
Tendons: 100' Span	lb.	55380	C-4	1650	0.019	\$0.51	\$0.84	\$0.02	\$75,870.60	
Tendons: 200' Span	lb.	110760	C-4	1700	0.019	\$0.51	\$0.82	\$0.02	\$149,526.00	
								Total Costs	\$1,000,460,0E	

Shear Walls

The shear wall take-off was done manually by hand based on the design done in Etabs. The same 10% allowance for additional concrete and rebar was used for the same reasons stated in the floor estimate. The pricing for formwork was taken for plywood forms. Concrete placement costs were estimated using the assumption that a pump truck would be used.

Shear Walls				Scheduling		Unit Costs			
Component	Unit	Quanity	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Actual Costs
Concrete	C.Y.	260	C-20	105	0.611	\$109.00	\$19.89	\$7.43	\$35,443.20
Formwork	S.F.C.A.	17500	C-2	395	0.122	\$0.77	\$4.51	\$0.00	\$92,400.00
Reinforcing: #4-#7	Ton	16.08	4 Rodm	3	10.67	\$890.00	\$460.00	\$0.00	\$21,708.00
Reinforcing: #8-#12	Ton	2.86	4 Rodm	4	8	\$890.00	\$345.00	\$0.00	\$3,532.10
		-						Total Cost	\$153,083.30

\$189,174.04

Total Cost

Columns

The columns were assumed to be formed using plywood just like the other components of the concrete structural systems. The same allowance for waste and overlap were also used for the concrete and reinforcing. Similarly placement costs came from the concrete being pumped into the forms.

Columns				Scheduling		Unit Costs			
Component	Unit	Quanity	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Actual Costs
Concrete	C.Y.	874	C-20	90	0.711	\$109.00	\$23.00	\$8.65	\$122,928.10
Formwork	S.F.C.A.	56640	C-1	236	0.135	\$0.81	\$4.89	\$0.00	\$322,848.00
Reinforcing: #4-#7	Ton	38	4 Rodm	1.5	21.33	\$935.00	\$915.00	\$0.00	\$70,300.00
Reinforcing: #8-#12	Ton	110	4 Rodm	2.3	19.91	\$935.00	\$600.00	\$0.00	\$168,850.00
								Total Cost	\$684,926.10

Foundations

All the same cost parameters and adjustments stated in the previous sections apply to the foundations as well.

Combined Footing 1			Scheduling			Unit Costs			
Component	Unit	Quanity	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Actual Costs
Concrete	C.Y.	557	C-20	400	0.16	\$100.00	\$5.20	\$1.94	\$59,676.98
Formwork	S.F.C.A.	1392	C-2	350	0.137	\$0.63	\$5.10	\$0.00	\$7,976.16
Reinforcing: #4-#7	Ton	4.25	4 Rodm	2.1	15.24	\$890.00	\$655.00	\$0.00	\$6,566.25
Reinforcing: #8-#12	Ton	2.04	4 Rodm	3.6	8.89	\$840.00	\$380.00	\$0.00	\$2,488.80
								Total Cost	\$76 708 19

Combined Footing 2			Scheduling			Unit Costs			
Component	Unit	Quanity	Crew	Daily Output	Labor Hours	Material	Labor	Equipment	Actual Costs
Concrete	C.Y.	400	C-20	400	0.16	\$100.00	\$5.20	\$1.94	\$42,856.00
Formwork	S.F.C.A.	1872	C-2	350	0.137	\$0.63	\$5.10	\$0.00	\$10,726.56
Reinforcing: #4-#7	Ton	5.1	4 Rodm	2.1	15.24	\$890.00	\$655.00	\$0.00	\$7,879.50
Reinforcing: #8-#12	Ton	0	4 Rodm	3.6	8.89	\$840.00	\$380.00	\$0.00	\$0.00
							· · · ·	Total Cost	\$61,462.06

Spread Footings Scheduling Unit Costs Unit Quanity Crew Daily Output Labor Hours Material Component Labor Equipment Actual Costs C-20 0.427 \$100.00 \$13.90 \$5.20 \$123,506.70 Concrete C.Y. 1037 150 S.F.C.A 8282 0.077 \$0.63 \$2.79 \$0.00 \$28,324.44 Formwork C-2 414 Reinforcing: #4-#7 Ton 20.98 4 Rodm 2.1 15.24 \$890.00 \$655.00 \$0.00 \$32,414.10 Reinforcing: #8-#12 Ton 4.04 4 Rodm 3.6 8.89 \$840.00 \$380.00 \$0.00 \$4,928.80

Total Concrete Structural Costs

Structural Costs	
Post-Tensioned Floors	\$1,990,469.05
Shear Walls	\$153,083.30
Columns	\$684,926.10
Foundations	\$327,344.29
Total	\$3,155,822.74

Potential Revenue Leasing Office Space

The goal of the cost analysis was to make the most accurate comparison possible between the steel structure and the concrete redesign. This goal requires that all variables between the two systems be examined and evaluated and a cost assigned to each variable that is different between the two. The preceding sections sought to find the costs associated with the materials, labor, and equipment needed to construct the two designs. That analysis accounted for the physical differences between the designs; however it missed one critical aspect that cannot be overlooked. The steel design had eight floors that could be leased out to tenants, while the concrete design included a ninth floor. This effectively added about 12.5% more leasable space to the building and therefore significantly increased potential revenue for the building owners. To put numbers to this difference, realtors in the Gaithersburg Maryland area were questioned to find what typical office space lease prices are. From their input, it was concluded that five dollars per square foot of space per year was a reasonable number to use for comparison purposes. The cost summary is shown below in tabular form.

Concrete Design			
Floor	Leasable Footage	Revenue	
9th	19900	\$99,500.00	
8th	19900	\$99,500.00	
7th	19900	\$99,500.00	
6th	19988	\$99,940.00	
5th	19988	\$99,940.00	
4th	19988	\$99,940.00	
3rd	19988	\$99,940.00	
2nd	19988	\$99,940.00	
1st	15925	\$79,625.00	
Total Revenue= \$877,825.00			

Steel Design			
Floor	Leasable Footage	Revenue	
8th	19900	\$99,500.00	
7th	19900	\$99,500.00	
6th	19988	\$99,940.00	
5th	19988	\$99,940.00	
4th	19988	\$99,940.00	
3rd	19988	\$99,940.00	
2nd	19988	\$99,940.00	
1st	15925	\$79,625.00	
Total Revenue= \$778,325.00			

The additional space provided by the concrete redesign yields an additional \$99,500 per year in leasing revenue. This is a rough estimate but it shows how significant the extra floor in the concrete structure is in terms of offering more revenue to the owner over the life time of the building. It should also be noted that the additional floor would also come with additional maintenance and operation costs but for the purposes of this report these factors were omitted.

Project Scheduling

Steel Schedule

The schedule that was developed for the steel construction was based loosely off of the RS Means estimate and advice from experts who have experience with such things in the Gaithersburg area. The total time required to complete the construction came to seven weeks.

Forming Footings	2 days
Placing Rebar in Footings	2 days
1st Floor Steel	5 days
1st Floor Concrete	2 days
2nd Floor Steel	5 days
2nd Floor Concrete	2 days
3rd Floor Steel	5 days
3rd Floor Concrete	2 days
4th Floor Steel	5 days
4th Floor Concrete	2 days
5th Floor Steel	5 days
5th Floor Concrete	2 days
6th Floor Steel	5 days
6th Floor Concrete	2 days
7th Floor Steel	5 days
7th Floor Concrete	2 days
8th Floor Steel	5 days
8th Floor Concrete	2 days
Penthouse Steel	2 days
Penthouse Concrete	1 day

Concrete Schedule

The concrete schedule that was developed for the purposes of this report was based solely off of advice taken from design professionals who have extensive experience with post-tensioned concrete floors. Based on the geometric layout and size of the Washingtonian Center it was determined that a maximum of eight thousand square feet per day. This would mean that each floor could be poured in three days. Input from contractors in the field showed that this is an efficient cycle, because three different crews can be working on the same floor at once. One crew would be forming, one placing steel and the third making the pour. When all the activities were accounted for, the total duration of construction came to 20 weeks.

Activity	Duration
Placing Rebar in Footings	2 days
Pouring Concrete	2 days
1st Floor Columns	2 days
1st Floor Shear Walls	1 day
1st Floor PT Floor	7 days
2nd Floor Columns	2 days
2nd Floor Shear Walls	1 day
2nd Floor PT Floor	7 days
3rd Floor Columns	2 days
3rd Floor Shear Walls	1 day
3rd Floor PT Floor	7 days
4th Floor Columns	2 days
4th Floor Shear Walls	1 day
4th Floor PT Floor	7 days
5th Floor Columns	2 days
5th Floor Shear Walls	1 day
5th Floor PT Floor	7 days
6th Floor Columns	2 days
6th Floor Shear Walls	1 day
6th Floor PT Floor	7 days
7th Floor Columns	2 days
7th Floor Shear Walls	1 day
7th Floor PT Floor	7 days
8th Floor Columns	2 days
8th Floor Shear Walls	1 day
8th Floor PT Floor	7 days
9th Floor Columns	2 days
9th Floor Shear Walls	1 day
9th Floor PT Floor	7 days
Penthouse Floor	3 days
Penthouse Roof	3 days

Conclusions from the Construction Management Breadth

A mixed bag of results came from the cost and scheduling examination, with both positives and negatives emerging for both the concrete and steel designs. On the cost side of things, the concrete structure was estimated to be almost \$715,000 more than the steel structure to build, but it also provided almost \$100,000 more in revenue per year. This would mean that the additional cost of constructing the concrete building would have a payoff period of about seven years, which in terms of the life of the building isn't very long. Looking at the situation from the scheduling point of view, the concrete building would take about two months longer to construct than the steel building. With proper planning of the construction period, these two additional months could be made to have a minimal impact on the building project as a whole.